STATISTICS AND	L ESSON PLAN	LP-EC-181403
		LP Rev. No: 00
	Sub Code & Name: MA8451 PROBABILITY AND RANDOM	Date: 12.12.2011
TOWARDS INTELLIGENCE	PROCESSES	Page 1 of 6
	Unit: IBranch: ECESemester : IV	

UNIT I RANDOM VARIABLES

Discrete and continuous random variables – Moments - Moment generating functions and their properties. Binomial, Poisson ,Geometric, Uniform, Exponential, Gamma and normal distributions – Function of Random Variable.

Objective: To enable the students to have a fundamental knowledge of the basic

probability concepts and to have a well-founded knowledge of standard distributions which can describe real life phenomena

Session				Teaching
No	Topics to be covered	Time	Ref	Method
1	Introduction, Random variables, discrete and continuous	50		
	random variables, cumulative distribution function			
2	Probability mass/density function Moments, moment	50		
	generating function, probability generating function.			
3	Moments, moment generating function, probability generating	50		
	function			
4,5	Examples of discrete random variables- Binomial Poisson	100		
	variates. Poisson Distribution		1	
6,7	Poisson, Geometric distributions.	100		
				Black
8,9	Continuous distributions - Uniform, Exponential distributions.	100		Board
				and
10	Gamma distribution, Normal distribution	50		Chalk
11	Normal Distribution	50		
12	Function of Random Variable – discrete, continuous	50		
13	Function of Random Variable, Revision	50		
14	CAT 1	40		

STUDIES AN INSTITUTE	LESSON PLAN	LP-EC-181403						
	Sub Code & Name : MA8451 PROBABILITY AND RANDOM PROCESSES	LP Rev. No: 00 Date: 12.12.2011 Page 2 of 6						
	Unit: II Branch: ECE Semester : IV							

UNIT II TWO DIMENSIONAL RANDOM VARIBLES

Joint distributions - Marginal and conditional distributions – Covariance - Correlation and Regression - Transformation of random variables - Central limit theorem (for iid random variables)

Objective: To acquire skills in handling situations involving more than one random variable and functions of random variables

Session				Teaching
No	Topics to be covered	Time	Ref	Method
15	Two- dimensional random variables, Joint distribution	50		
	functions, joint density functions.			
16	Marginal distribution/density functions, conditional density	50		
	functions, independent random variables			
17	Correlation, covariance, Spearman's rank correlation.	100		
18	Regression curves	50		
19	Regression curves	50	1	Black
20	Regression lines, Rank correlation	50		Board
21	Regression lines, Rank correlation	50		and
22	Tranformation of random variables	50		Chalk
23	Tranformation of random variables	50		
24	Central limit theorem	50		
25	CAT 2	40		

SULLISAN INSTITUT		LESS	ON PL	AN	LP-EC-1	81403
	Sub Code &	Name: MA845	1 PROBAB	ILITY AND RANDOM	Date: 12.	No: 00 12.2011
TOWARDS INTELLIGENCE		PRO	OCESSES		Page 3	of 6
	Unit: III	Branch:	ECE	Semester : IV		

UNIT III CLASSIFICATION OF RANDOM PROCESSES

Definition and examples - first order, second order, strictly stationary, wide-sense stationary and ergodic processes - Markov process - Binomial, Poisson and Normal processes - Sine wave process - Random telegraph process.

Objective:

Understand and characterize phenomena which evolve with respect to time in probabilistic manner.

Session	Transford to be accounted	T!	Def	Teaching
NO	I opics to be covered	Time	Kei	Method
26	Random processes- Introduction, classification.	50		
27	Stationary processes- first order, second order, autocorrelation	50		
20.20	Tunction, autocovariance function, wss	100		
28,29	WSS processes, Problems, Ergodic Processes	100		
30	Markov process, Bernoulli process	50		
31	Binomial process	50	2	Black Board
32	Poisson process	50		and Chalk
33	Poisson process	50		
	r	20		
34	Normal process	50		
35	Normal process	50		
36	Sine-wave process	50		
37	Random Telegraph process	50		
38	CAT 3	40		

STUDIES AN INSTITUTE	LESSON PLAN	LP-EC-181403
		LP Rev. No: 00
	Sub Code & Name : MA8451 PROBABILITY AND RANDOM	Date: 12.12.2011
TOWARDS INTELLIGENCE	PROCESSES	Page 4 of 6
	Unit: IV Branch: ECE Semester : IV	

UNIT IV CORRELATION AND SPECTRAL DENSITIES

Auto correlation - Cross correlation - Properties – Power spectral density – Cross spectral density - Properties – Wiener-Khintchine relation – Relationship between cross power spectrum and cross correlation function .

Objective:

To understand the relationship within and between random processes

Session				Teaching
No	Topics to be covered	Time	Ref	Method
39	Properties of Auto-correlation, auto-covariance functions	50		
40	Cross correlation function –properties.	50		
46	Power spectral density, cross Power spectral density,	50		Black
	properties			Board
47	Problems	50		and
				Chalk
48	Wiener – Khintchine theorem	50	2	
49	Problems	50		
50	Relationship between cross power spectrum and cross	50		
	correlation function			
51	Problems	50		
52	Revision	50		
53	CAT 4	40		

SURDSAN INSTITUT	LESSON PLAN	LP-EC-181403
TO HOLE		LP Rev. No: 00
	Sub Code & Name : MA8451 PROBABILITY AND RANDOM	Date: 12.12.2011
TOWARDS INTELLIGENCE	PROCESSES	Page 5 of 6
	Unit: V Branch: ECE Semester : IV	

UNIT V LINEAR SYSTEMS WITH RANDOM INPUTS

Linear time invariant system - System transfer function - Linear systems with random inputs - Auto correlation and cross correlation functions of input and output - white noise.

Objective:

To be able to analyze the response of random inputs to linear time invariant systems.

Session				Teaching
No	Topics to be covered	Time	Ref	Method
54	Linear systems with random inputs - LTI systems- System transfer function	50		
55	Causal system, stable system, Autocorrelation and cross correlation functions of input and output	50		
56	Autocorrelation and cross correlation functions of input and output	50		
57	Problems	50		
58	Problems	50	2	Black Board
59	White Noise	50		and Chalk
60	Problems, Revision	50		
61	Cat 5	40		

STATISTICS AN INSTITUTE	LESSON PLAN	LP-EC-181403
	Sub Code & Name : MA8451 PROBABILITY AND RANDOM	LP Rev. No: 00 Date:12.12.2011
	Unit: Branch: ECE Semester : IV	Page 6 of 6

Course Delivery Plan:

Week	1		2	2		3	Z	1	4	5	6	5	7	7	8	5	9	10	1	1	1	2	1	3	1	4	1	5
	Ι	II	Ι	Π	Ι	Π	Ι	Π	Ι	Π	Ι	II	Ι	II	Ι	II	ΙII	I II	Ι	Π	Ι	Π	Ι	II	Ι	II	Ι	Π
Units									CATI				САТП				САТ Ш								CAT IV			CAT V

TEXT BOOKS

1. Oliver C. Ibe, "Fundamentals of Applied probability and Random processes", Elsevier, First Indian Reprint (2007) (For units 1 and 2)

2. Peebles Jr. P.Z., "Probability Random Variables and Random Signal Principles", Tata McGraw-Hill Publishers, Fourth Edition, New Delhi, 2002. (For units 3, 4 and 5).

REFERENCES

1. Miller, S.L and Childers, S.L, "Probability and Random Processes with applications to Signal Processing and Communications", Elsevier Inc., First Indian Reprint 2007.

2. H. Stark and J.W. Woods, "Probability and Random Processes with Applications to Signal Processing", Pearson Education (Asia), 3rd Edition, 2002.

3. Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw-Hill edition, New Delhi, 2004.

4. Leon-Garcia, A, "Probability and Random Processes for Electrical Engineering", Pearson Education Asia, Second Edition, 2007.

5. Yates and D.J. Goodman, "Probability and Stochastic Processes", John Wiley and Sons, Second edition, 2005.

	Prepared by	Approved by
Signature		
Name		
Designation		
Date		

DOC/LP/01/20.12.19